nivio Documentation

Daniel Pozzi

May 18, 2022

Contents:

1 Getting Started 3
.1 Inmstallation e e e e e e 3
1.2 Creating the first landscape L. 3
1.3 Updating the landscape o o e e e e e e e e 4
1.4 Exploring the Niviomodel e 5
1.5 Addingrelations between itemso e e e e e e e e e e e e e e 6
1.6 Addingicons o e e e e e e e e e e e 6
1.7 Introducing KPIs L e 7
1.8 Summary e 8
1.9 Bonus: Having Niviopull yourdata e 9
1.10 Deleting items o o v v i e e e e e e e e e e e e e 9
[.11 Environment variables e 9

2 Input Sources 13
2.1 Kubernetes Cluster inSpection i e e e e e e e e e e e e e e 13
2.2 Rancher 1 Cluster Inspection i i i i i e e e e e e 13
2.3 Nivio proprietary format L e e e 14
24 Reading from CSV o L L e e e e e 14
2.5 Reading and Mapping from JSON 14
2.6 Reading from GraphVizdotfiles. e 15
2.7 Externaldata e e 15

3 Model and Syntax 17
3.1 Landscape e e e e e e e e e e e e e e 17
3.2 LandscapeDescription i e e e e e e e e e e e 19
3.3 SourceReference L e 20
34 LandscapeConfig L e 20
3.5 KPIConfig 21
3.6 LayoutConfig e e e 22
37 Branding e e e e e e e e e e e e e 22
3.8 GroupDescription e e e e e e e e e e e e e e e e e e 22
3.9 ItemDescription e e e e e e 23
3.10 InterfaceDescription e 25
301 Link. . oo e 25
32 Ttem GIoUPS .« . v v o o e 27
3.13 Ttem Identification and Referencing e 27

4 Data Assessment using KPIs
4.1 BuiltinKPIs
42 CustomKPIs

5 Shortcuts and convenience fun
5.1 Assigning items to groups

ctions

5.2 Using Templates to dynamically assigndata

5.3 UsingLabelstoassigndata e

5.4 Relations between landscape items L. Lo
6 Output

6.1 Searching L e e e e

6.2 Modifying [tem Appearance e e e e e

7 Custom(er) Branding

8 Troubleshooting
8.1 Behindaproxy
8.2 Graph Layout Tweaking

9 References

Index

29
29
30

33
33
33
34
34

37
37
37

39

41
41
41

43

45

nivio Documentation

Nivio is a tool for application landscape management targeted at teams (developers, operators, managers). It follows
a no-op approach, i.e. there is no interface for manual data maintenance. Instead, Nivio pulls all its information from
data sources, like files and web APIs (e.g. monitoring items) or allows pushing information via its API.

ACME Pet Ciinic

* It is easy to install and to maintain. Runs dockerized on a single server with moderate to low hardware
requirements. It stores the items, so it can be discarded at any time and be refilled with the next start.

» No-op usage Besides its initial configuration, it is designed to gather the application landscape information from
configurable items, preferably code repositories.

¢ Renders the landscapes as a graph See above.

* Multiple configuration sources While Nivio has its proprietary YAML format, you can also use docker-
compose files, or use them as basis and enrich them using further files

Contents: 1

nivio Documentation

* PULL and PUSH Basic indexing of landscapes driven by observed configuration files, or send data to the APL

» Aggregation of item state Using sources, like Prometheus, and marking items accordingly.

2 Contents:

[S

CHAPTER 1

Getting Started

1.1 Installation

The easiest way to get started is by bringing up Nivio in Docker:

export NIVIO BASE URL=http://localhost:8080
docker run —-it —--rm -e NIVIO_BASE_URL -p 8080:8080 dedica/nivio:latest

Take a look at http://localhost:8080/

A friendly reminder on the application starting screen tells you that there are no landscapes loaded, yet. To do so,
follow the instructions below.

1.2 Creating the first landscape

The simplest possible landscape definition consists of:
¢ an identifier, used e.g. when updating the landscape
¢ a name, that is shown in the Ul
e atleast 1 item (things get weird if there are no items at all)

In YAML, it looks like this:

identifier: tutorial
name: Nivio Tutorial
items:
— identifier: item-1
name: My first item

Create the file tutorial.yaml and upload (POST) this file using curl:

http://localhost:8080/

nivio Documentation

curl -X POST -H "Content-Type: application/yaml" --data-binary @tutorial.yaml NIVIO_
—BASE_URL//api/landscape

Take another look at http://localhost:8080/

X) ; . .
< (¢] O D localhost:3080/#/landscape/tutoria %
L]
* NIVIO TUTORIAL ‘ A

SEARCH ®
@

FIELDS KPIS REPORT
group 1 domain

layer 1 domain

RESULTS

MY first item

You should find your landscape with the item in it. The item might be assigned to a default group called domain.

The OpenAPI (aka Swagger) documentation is located at /v3/api-docs (JSON) or /swagger-ui.html
(HTML GUI).

1.3 Updating the landscape

For example, simply change the name of the item and run the same curl command again.
The landscape diagram should update immediately in your browser.

As long as the landscape’s identifier is the same, it will be updated in place. If you change the landscape identifier in
the YAML file, then Nivio will create a new, separate landscape.

curl -X PUT -H "Content-Type: application/yaml" --data-binary @tutorial.yaml NIVIO_
—BASE_URL//api/landscape/tutorial

If the update doesn’t seem to be happening, make sure the curl request didn’t fail and you used PUT as method. If the
reason is not obvious, you can also investigate in the Nivio logs.

For some changes, unfortunately though, you will have to restart Nivio and submit the landscape afresh.

4 Chapter 1. Getting Started

http://localhost:8080/

nivio Documentation

1.4 Exploring the Nivio model

1.4.1 Adding your own groups
* Without groups, all items will be assigned to a default group. Items can be assigned to groups using the group
attribute.
* If a group does not exist, nivio creates it. To customize a group, add it to the configuration.

* However, you can’t create a group with no attributes. Nivio will not accept the landscape. So at least add an
owner.

If intended to delete already set group attributes such as description or contact, you can do so. But
please pay attention that this is not true for the attributes of items or of the landscape. The reason is that
group attributes for the groups are all manually set, and the user should have full control about it. For items,
instead, best practice is that attributes stick to the old values if they are missing in one configuration file. This is
because items are mainly set by several config files. Also, landscapes are not intended to have missing attributes.
Therefore, the landscape’s attributes stick to formerly set ones if they are missing.

groups:
letters:
owner: Myself
description: All the letters
numbers:
owner: Myself
description: All the numbers
items:
— identifier: a
name: Item A
group: letters

+
O D localhost:a w
¥ NIVIO TUTORIAL a A
SEARCH @
=] @

FIELDS KPIS REPORT

Q

group 3 letters 2 numbers

layer s domain

RESULTS

numbers

1.4. Exploring the Nivio model 5

nivio Documentation

1.5 Adding relations between items

* Relations are a key element of every graph. Note that relations are directional in Nivio.

¢ A relation can have a weight attribute between 0-5 to control the width of the line between the two items.

4

O D localhost:& o
¥ NIVIO TUTORIAL 'y
SEARCH ®

@

FIELDS KPIS REFORT

Q

group 3 letters 2 numbers

layer 5 domain

RESULTS

© 0

numbers

1.6 Adding icons

— identifier: a

name: Item A

group: letters

icon: https://visioguy.github.io/IconSets/aws/icons/amazon_ec2.png
— identifier: b

name: Item B

group: letters

icon: https://visioguy.github.io/IconSets/aws/icons/amazon_dynamodb.png
— identifier: c

name: Item C

group: letters

icon: https://visioguy.github.io/IconSets/aws/icons/amazon_simple_queue_service_

(sgs) .png

!

6 Chapter 1. Getting Started

® 9 o u A W N =

T

nivio Documentation

<« > C

* NIVIO TUTORIAL

Q

1.6.1 Observations
e We are not using them here, but don’t forget that Nivio supports all the [Material Design Icons](https:
//materialdesignicons.com/) out of the box!

* If you do use custom icons intensively, you should find a place for hosting them. You can define an environment
variable NIVIO_TCON_FOLDER which contains a path reachable for the app.

1.7 Introducing KPIs

Before you can set a KPI on an item, you need to define the KPI itself.

Here we create one called capacity. It requires a value of 90-100 in order to be considered healthy (green),
80-90 for semi-healthy (yellow), and everything else will be considered unhealthy (red):

config:
kpis:
capacity:
label: capacity
ranges:
GREEN: 90;100
YELLOW: 80; 90
RED: 0;80

Now the KPI can be used simply by adding the corresponding attribute to any item:

items:
— identifier: a
name: Item A
capacity: 87

1.7. Introducing KPls 7

https://materialdesignicons.com/
https://materialdesignicons.com/

nivio Documentation

+
QO D localhost:8 Se/tutorial &

Ll L]

¥ NIVIO TUTORIAL A A

SEARCH ®
@

FIELDS KPIS REPORT

Q

group 3 letters 2z numbers

layer s domain

RESULTS

00

numbers

1.7.1 Observations

* The status of a KPI (i.e. its color) is automatically assessed based on the attribute value - awesome!
* There are two other colors that you could use, orange and brown.

* You only need to define a KPI once, then you can use the respective attribute on as many items as you need to.
And of course, an item can use multiple KPIs.

* Nivio ships with a number of default KPIs (for more information see Data Assessment using KPIs section)

1.8 Summary

1.8.1 Conclusion

Once you have figured out its configuration language, Nivio is a great tool for quickly creating a cool visualization
of your graph and of the dependencies between the entities you are managing, whether it’s software architecture,
an application landscape, your organization, or any other domain. The addition of dynamic KPIs and the status
aggregation make it really easy to spot issues quickly!

1.8.2 Best practices

e Use groups and items. Use relations between items. They also can have weights.

* A group requires at least 1 attribute in order to work. Use owner, because Nivio always shows something on
the owner anyways, and “No owner” doesn’t look great.

The following attributes should be on every item: a name, an icon, a group assignment, KPI attributes for
the info tab, and any random word with a value for the details tab. This way, the item’s details will be
nicely filled out across the info, relations (if applicable), and details tabs.

* Define your own KPIs that make the most sense for your use case.

8 Chapter 1. Getting Started

nivio Documentation

* Find a place to host your custom icons. Don’t abuse and don’t rely on external hosts!

* Make sure to read Using Templates to dynamically assign data before putting too much effort into item config-
uration.

1.8.3 Caveats

* The colors that are automatically assigned to groups tend to be dark and lack contrast, because they are also
used for printing with white background. While you can assign colors manually, it’s very tedious to do so.

* You can experiment a lot with the structure of the landscape, but better figure out the attributes once and then
stick to them. For example, icons, or color of groups, etc. - in order to see them updated everywhere (or at all!)
you’ll often have to restart Nivio and submit the landscape again.

1.9 Bonus: Having Nivio pull your data

In order to have data automatically observed to changes Nivio expects a seed configuration at start time. You need to set
the environment variable SEED. The configuration file contains basic data, references to item descriptions sources,
which can be local paths or URLs. The descriptions can be gathered by HTTP, i.e. it is possible to fetch files from
protected sources via authentication headers. Think of GitLab or GitHub and the related tokens. To use secrets etc.,
please refer to Environment variables.

identifier: nivio:example
name: Landscape example
contact: maillacme.org
description: This is an example landscape.
sources:
- "./items/wordpress.yml"
— url: "http://some.server/docker-compose.yml"
format: docker-compose-v2
- url: https://gitlab.com/bonndan/nivio-private-demo/raw/docker-compose.yml
headerTokenName: PRIVATE_TOKEN
headerTokenValue: ${MY_ SECRET_TOKEN_ENV_VAR}

1.10 Deleting items

Items not referenced anymore in the descriptions will be deleted automatically on a complete and successful re-index
run. If an error occurs fetching the source while indexing, the behaviour of the indexer changes to treat the available
data as partial input. This means only inserts and updates will happen and no deletion.

1.11 Environment variables

The following environment variables can be set to configure nivio:
DEMO

A non-empty value causes Nivio to start in demo mode with prepared data. Use the value ‘all’ to load more landscapes.

GITHUB_JWT
GitHub JSON Web Token (JWT) to connect to GitHub as a GitHub App.

1.9. Bonus: Having Nivio pull your data 9

nivio Documentation

GITHUB_LOGIN

GitHub user name. Can also be used to connect as organization with OAuth.
GITHUB_OAUTH

GitHUb OAuth Token to connect to GitHub via personal access token.
GITHUB_PASSWORD

GitHub password (for username/password login).

GITLAB_HOST_URL

The full URL to the GitLab API, e.g. http://your.gitlab.server.com/api/v4.
GITLAB_PASSWORD

GitLab OAuth login password (optional).
GITLAB_PERSONAL_ACCESS_TOKEN

Personal token to access the GitLab APl at GTTLAB_HOST_URL (optional).
GITLAB_USERNAME

GitLab OAuth login username (optional). If used, GTTLAB _PASSWORD is also required).
KUBERNETES_MASTER

K8s master URL (optional). All variables from https://github.com/fabric8io/kubernetes-client#configuring-the-client
can be used.

NIVIO_AUTH_ALLOWED_ORIGINS

Patterns for allowed origins when the app requires authentication
NIVIO_AUTH_GITHUB_ALIAS_ATTRIBUTE

GitHub user attribute to use as alias
NIVIO_AUTH_GITHUB_CLIENT_ID

GitHub app OAuth?2 client id
NIVIO_AUTH_GITHUB_CLIENT_SECRET

GitHub app OAuth?2 client secret
NIVIO_AUTH_GITHUB_NAME_ATTRIBUTE

GitHub user attribute to use as name
NIVIO_AUTH_LOGIN_MODE

Authentication mode: none, optional, required
NIVIO_BASE_URL

The base URL of Nivio to be used for frontends if running behind a proxy.
NIVIO_BRANDING_BACKGROUND

Branding background color (hexadecimal only).
NIVIO_BRANDING_FOREGROUND

Branding foreground color (hexadecimal only).

NIVIO_BRANDING LOGO_URL

10 Chapter 1. Getting Started

http://your.gitlab.server.com/api/v4
https://github.com/fabric8io/kubernetes-client#configuring-the-client

nivio Documentation

A URL pointing to a logo.
NIVIO_BRANDING_MESSAGE

A welcome message on the front page.
NIVIO_BRANDING_SECONDARY

Accent color used for active elements (hexadecimal only).
NIVIO_ICON_FOLDER

A folder containing icons named similar to material design icons
NIVIO_MAIL_HOST

SMTP mail host.

NIVIO_MAIL_PASSWORD

SMTP mail password.

NIVIO MAII,_PORT

SMTP mail port.

NIVIO_MAIL_USERNAME

SMTP mail username.

PORT

The port Nivio runs on.

SEED

A semicolon-separated list of file paths containing landscape configurations.

SONAR_LOGIN

SonarQube login (username).
SONAR_PASSWORD
SonarQube password.
SONAR_PROXY_ HOST
SonarQube proxy host (optional).
SONAR_PROXY_PORT
SonarQube proxy port (optional).
SONAR_SERVER_URL
SonarQube server URL.

1.11. Environment variables

11

nivio Documentation

12 Chapter 1. Getting Started

CHAPTER 2

Input Sources

2.1 Kubernetes cluster inspection

Kubernetes clusters are inspected using Fabric8.i0’s Java client. See https://github.com/fabric8io/kubernetes-client#
configuring-the-client for configuration. Parsing can be configured via a URL, i.e. the examined namespace can be
given (otherwise all namespaces are scanned) and a label for building groups can be named. Both parameters and even
the whole URL are optional.

identifier: k8s:example
name: Kubernetes example
sources:
- url: http://192.168.99.100?namespace=mynamespace&grouplLabel=labelToUseForGrouping
format: kubernetes

2.2 Rancher 1 Cluster Inspection

Rancher clusters can be indexed one project (aka environment in the GUI speak) at a time. Access credentials can be
read from environment variables. To exclude internal stacks, like those responsible for internal networking, blacklist
them.

identifier: rancher:example
name: Rancher 1.6 API example
config:

groupBlacklist: [".xinfra.x"]

sources:
- url: "http://rancher-server/v2-beta/"
projectName: Default
apiAccessKey: ${API_ACCESS_KEY}
apiSecretKey: ${API_SECRET_KEY}
format: rancherl

13

https://github.com/fabric8io/kubernetes-client#configuring-the-client
https://github.com/fabric8io/kubernetes-client#configuring-the-client

nivio Documentation

2.3 Nivio proprietary format

Nivio provides its own format which allows to set all model properties manually (see Model and Syntax section).

2.4 Reading from CSV

Nivio can parse CSV files regarding rows as landscape items. The order of the columns in the file is important because
headers are ignored and not mapped automatically. Instead, each column number, starting at zero, can be assigned to
an item property in the mapping configuration. Additionally, the CSV separator char and the number of lines to skip
(usually 1 for the header row) can be set.

sources:
- url: "./services/test.csv"
format: csv
mapping:
identifier: 1
name: 0

description: 2

providedBy: 3
separator: ";"
skipLines: 1

2.5 Reading and Mapping from JSON

Any JSON file or URL can be parsed and mapped into a landscape description. Existing structures are mapped to
landscape components using JSONPath, a query language to traverse JSON objects and select specific properties.

identifier: example:customjson
name: Custom JSON example
sources:
- format: customJSON
url: /mnt/items. json
mapping:
items:
item:
identifier: "S$.id"
endOfLife: "S.end of life.date"
name: 'S$.moreThanAName|find " ([\\w\\s]=*),""'

"S.items"

nivio.link.homepage:

"S.a_named_link"

nivio.relations.inbound:

"S.Q@dependencies.@upstream|fetch|$.items[*].1id"

nivio.relations.providers:

"S.infra|fetch|$.items[*].1id"

The folling mapping steps are supported:

e JsonPath. Simply add the path expression. Note that the root for items is the root of the assigned JSON
subnode. For more info on JsonPath, see https://support.smartbear.com/alertsite/docs/monitors/api/endpoint/
jsonpath.html.

« fetch an URL, starting with the keyword _fetch_

* find a subtext using regular expressions. starting with the keyword _find_. Make sure to put lines containing
regexes in single quotes and surround the pattern with double quotes (a CSV parser is used in combination
with a YAML parser, so this is the combination that works).

14 Chapter 2. Input Sources

https://support.smartbear.com/alertsite/docs/monitors/api/endpoint/jsonpath.html
https://support.smartbear.com/alertsite/docs/monitors/api/endpoint/jsonpath.html

nivio Documentation

2.6 Reading from GraphViz dot files

https://www.graphviz.org/ is a graph visualisation software which uses the dot language https://graphviz.org/doc/info/
lang.html to describe graphs. It is possible to add arbitrary attributes to nodes and edges, so nivio can use these
attributes to enhance items and relations. However, it is necessary to prefix attributes that should be taken into account

29

using the string “nivio_".

digraph G {
main |
nivio_owner = Marketing,
nivio_software="Wordpress 2.0",
nivio_group=FooBar,
nivio_contact="foolbar.com"
]
main -> parse —> execute
main -> init [nivio_format = Jjson, nivio_type=PROVIDER, nivio_description=
—"init the procedure", nivio_frameworks="PHP:7.2,Angular:9"]
main -> cleanup
execute —> make_string
execute -> printf
init -> make_string
main -> printf
execute -> compare

}

Also remember to put non-ascii words (like email addresses) or sentences into double quotes.

To configure this as input source, add:

sources:
- url: "./test/foo.dot"
format: dot

2.7 External data

Nivio can load external data that cannot be used directly to build landscapes, but is still valuable. For example, the
number of GitHub issues might be interesting to see on a landscape item that is an open source component. To attach
such data to landscape components, use links having special known identifiers like “github” or “sonar”.

This is work in progress. Currently supported link identifiers are:
e github for GitHub repositories
* gitlab for GitLab repositories

e spring.health for Spring Boot health actuators https://docs.spring.io/spring-boot/docs/current/
actuator-api/htmlsingle/#health

items:
— identifier: nivio
links:
github: https://github.com/dedica-team/nivio
spring.health: http://localhost:8090/actuator/health
sonar: http://hihi.huhu not implemented yet

2.6. Reading from GraphViz dot files 15

https://www.graphviz.org/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/#health
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/#health

nivio Documentation

16 Chapter 2. Input Sources

CHAPTER 3

Model and Syntax

3.1 Landscape

A landscape is defined as a collection of items which somehow belong together, be it for technical or business rea-
sons. For example, a company department might model ALL its applications in production as one landscape and use
grouping or tagging to further separate the applications. A second landscape could be used to model a future layout
with a different infrastructure. Both landscapes could have items in common (like a database, load balancer, etc.), so
their configuration can be reused.

17

nivio Documentation

18 Chapter 3. Model and Syntax

nivio Documentation

3.2 LandscapeDescription

Name | Type Description Re- Example
marks
as- Map<array> optional, | null
sign- defaults
Tem- to null
plates
color | String optional, | null
defaults
to null
con- Land- optional, | null
fig scapeCon- defaults
fig<LandscapeConfig> to null
con- String Primary contact method, preferably an email address. optional, | null
tact defaults
to null
de- String A brief description of the landscape. optional, | null
scrip- defaults
tion to null
groups | Map<GroupDescHptemption of item groups (optional, can also be given | optional, | null
in sources). defaults
to null
icon String An icon or logo url optional, | null
defaults
to null
iden- | String Immutable unique identifier. Maybe use an URN. re- null
tifier quired,
defaults
to null
isPar- | Boolean optional, | null
tial defaults
to null
items | List<ItemDescriptish®»f configuration sources. Handled in the given or- | optional, | null
der, latter extend/overwrite earlier values like items etc. | defaults
to null
labels | Map optional, | null
defaults
to null
links Map<Link> Key-value pairs of related links. Some keys like | optional, | github: https:
"github’ cause that the endpoint data is parsed and | defaults //github.com/
added to to corresponding landscape component. to null dedica-team/
nivio
name | String Human readable name. re- null
quired,
defaults
to null
owner | String The business owner (person or team), preferably an | optional, | null
email address. defaults
to null
par- Boolean marks that the landscape is not complete, but an update | optional, | null
tial defaults
to null
tem- Map<ItemDescriptéandescriptions to be used as templates. All values ex- | optional, | null
3idatdsandscapeDescriptign identifier and name will be applied to the assigned | defaults 19
T items. to null

https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio

nivio Documentation

3.3 SourceReference

This is a reference to a configuration file.

Name Type Description Remarks Example

assignTem- Map<arrayA map with template identifier as key and item | optional, = de- | endOfLife: [web,

plates identifier matchers as value faults to null “java6*”’]

basicAuth- String optional, de- | null

Password faults to null

basicAu- String optional, de- | null

thUsername faults to null

deprecation String deprecation info (typically used in OpenAPI | optional, de- | null

specs) faults to null

format String The input format. optional, de- | null
faults to null

headerTo- String optional, de- | null

kenName faults to null

headerTo- String optional, de- | null

kenValue faults to null

href String The link target. required, null
defaults to null

hreflang String hateoas language optional, de- | null
faults to null

media String hateoas media type optional, de- | null
faults to null

name String HateOAS / OpenAPI name optional, de- | null
faults to null

rel String hateoas relation type optional, de- | null
faults to null

title String hateoas title optional, de- | null
faults to null

type String optional, de- | null
faults to null

url String A URL, but can also be a relative path. optional, de- | ./a/items.yaml

faults to null

3.4 LandscapeConfig

Configuration of key performance indicators (i.e. status indicators) and layouting tweaks.

20

Chapter 3. Model and Syntax

nivio Documentation

Name | Type Description Remarks Example
brand- | Brand- optional, null
ing ing<Branding> defaults to
null
greedy | Boolean Flag that enables instant creation items based relation tar- | optional, null
gets that cannot be found in the sources. defaults to
null
group- | List Names or patterns of groups that should be excluded from | optional, infra.*
Black- the landscape. Used to improve automatic scanning re- | defaults to
list sults. null
kpis Map<KPIConfig>Key performance indicator configs. Each KPI must have | optional, null
a unique identifier. defaults to
null
label- List Names or patterns of labels that should be ignored. Used | optional, FCOM-
Black- to improve automatic scanning results. defaults to | POSI-
list null TION.*
layout- | LayoutCon- required, null
Config | fig<LayoutConfig> defaults to
null

3.5 KPIConfig

The configuration of landscape specific key performance indicators that derive status information from landscape
components. Usually the KPIs work on labels

Name | Type Description Re- Exam-
marks ple
de- String Description of the purpose of the KPI optional, | null
scrip- defaults
tion to null
en- BoolgaA flag indicating that the KPI is active. Can be used to disable default | optional, | null
abled KPIs. defaults
to null
label String Key of the label to evaluate re- costs
quired,
defaults
to null
matches Map| A map of string based matchers that determine the resulting status | optional, | RED:
(GREENIYELLOWIORANGEIREDIBROWN). Use a semicolon to sepa- | defaults | BAD;err.
rate matchers. to null
mes- String Template for the displayed message, containing a placeholder for the as- | optional, | The
sageTem- sessed value ’%s defaults | current
plate to null value is:
Y08
ranges | Map| A map of number based ranges that determine the resulting status | optional, | GREEN:
(GREENIYELLOWIORANGEIREDIBROWN). Use a semicolon to sepa- | defaults | 0;99.999909
rate upper and lower bounds. Tries to evaluate label values as numbers. to null
3.5. KPIConfig 21

nivio Documentation

3.6 LayoutConfig

Layout configuration for landscapes with unusual number or ratios of items, groups and relations.

Name Type | Description Remarks Ex-
ample

groupLayoutIni- Inte- | The initial temperature for layouts of groups. required, defaults | 900

tialTemp ger to 900

groupMaxDis- Inte- | A maximum distance between groups up to where | required, defaults | 1000

tanceLimit ger forces are applied. to 1000

groupMinDis- Inte- | The minimum distance between groups. required, defaults | 50

tanceLimit ger to 50

itemLayoutInitial- | Inte- | The initial temperature for layouts of items within | required, defaults | 300

Temp ger groups. to 300

itemMaxDis- Inte- | A maximum distance between items up to where | required, defaults | 350

tanceLimit ger forces are applied. to 350

itemMinDistance- | Inte- | The minimum distance between items. required, defaults | 100

Limit ger to 100

3.7 Branding

Map branding (tweaks visuals)

Name | Type Description Remarks | Example

map- String A resolvable URL pointing to a CSS stylesheet. This stylesheet is | optional, https:

Stylesheet included in the generated SVG map. Use is to style the appearance | defaults to | //acme.com/
of the map. null css/acme.css

3.8 GroupDescription

A group of items. Could be used as bounded context, for instance.

22 Chapter 3. Model and Syntax

https://acme.com/css/acme.css
https://acme.com/css/acme.css
https://acme.com/css/acme.css

nivio Documentation

landscape component.

null

Name| Type | Description Remarks | Example
color | String| The HTML (hexcode only!) color used to draw the group and | optional, 05ffaa
its items. If no color is given, one is computed. defaults to
null
con- | String| A contact method, preferably email. optional, null
tact defaults to
null
con- | List | A list of item identifiers or SQL-like queries to easily assign | optional, identifier =~ LIKE
tains items to this group. defaults to | ‘DBI’
null
de- String| A brief description. optional, null
scrip- defaults to
tion null
envi- | String optional, null
ron- defaults to
ment null
iden- | String| A unique identifier for the group (also used as name). Descrip- | required, | shipping
tifier tions are merged based on the identifier. defaults to
null
la- Map optional, null
bels defaults to
null
links | Map<Lilfley-value pairs of related links. Some keys like ’github’ cause | optional, github: https:
that the endpoint data is parsed and added to to corresponding | defaults to | //github.com/

dedica-team/nivio

defaults to
null

name | String optional, null
defaults to
null

owner | String| The business owner of the group. optional, null

3.9 ltemDescription

List of configuration sources. Handled in the given order, latter extend/overwrite earlier values like items etc.

3.9. ItemDescription

23

https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio

nivio Documentation

Name Type Description Re- Example
marks
ad- String The technical address of the item (should be an URI). Taken | optional, | null
dress into account when matching relation endpoints. defaults
to null
color | String Overrides the group color. Use an HTML hex color code | optional, | 4400FF
without the leading hash. defaults
to null
con- | String The primary way to contact a responsible person or team. | optional, | john-
tact Preferably use an email address. defaults son@acme.com
to null
de- String A brief description. optional, | null
scrip- defaults
tion to null
framet Map The parts used to create the item. Usually refers to technical | optional, | java: 8
works frameworks. defaults
to null
group| String The identifier of the group this item belongs in. Every item | optional, | shipping
requires to be member of a group internally, so if nothing is | defaults
given, the value is set to its layer. to null
icon | String An icon name or URL to set the displayed map icon. The | optional, | null
default icon set is https://materialdesignicons.com/ and all | defaults
names can be used (aliases do not work). to null
iden- | String Immutable unique identifier (maybe use an URN). Primary | re- null
ti- means to identify items in searches. quired,
fier defaults
to null
in- Set<Interfa¢ceNesatiptiiom>of low level interfaces. Can be used to describe | optional, | null
ter- HTTP API endpoints for instance. defaults
faces to null
la- Map optional, | null
bels defaults
to null
layer | String The technical layer optional, | infrastructure
defaults
to null
life- | String The lifecycle state of an item. optional, | null
cy- defaults
cle to null
links | Map<Link> Key-value pairs of related links. Some keys like ’github’ | optional, | github: https:
cause that the endpoint data is parsed and added to to corre- | defaults //github.com/
sponding landscape component. to null dedica-team/
nivio
name | String A human readable name/title. The name is considered when | optional, | my beautiful ser-
items are searched. defaults vice
to null
owner String The business owner of the item. Preferably use an email | optional, | john-
address. defaults son@acme.com
to null
pro- | List A collection of identifiers which are providers for this item | optional, | shipping-
vid- (i.e. hard dependencies that are required). This is a conve- | defaults mysqldb
edBy nience field to build relations. to null
sta- | List<map>| A list of statuses that works like hardcoded KPIs. optional, | null
tus defaults
oA A4 tonulf
“Sta- | List<map>| A list of statuses that works like hardcoded KPIs. > 'W
tuses defaults
to null
tacs | List optional. | null

mailto:johnson@acme.com
mailto:johnson@acme.com
https://materialdesignicons.com/
https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio
https://github.com/dedica-team/nivio
mailto:johnson@acme.com
mailto:johnson@acme.com

nivio Documentation

3.10 InterfaceDescription

Describes a low-level interface of an item.

Name Type Description Remarks Exam-
ple
deprecated | Boolean optional, defaults to null | null
description | String A brief description. optional, defaults to null | null
format String The payload format. optional, defaults to null | null
name String optional, defaults to null | null
parameters | String optional, defaults to null | null
path String optional, defaults to null | null
payload String optional, defaults to null | null
protection | String A description of the interface protection method. | optional, defaults to null | null
summary String optional, defaults to null | null
url String A URL describing the endpoint. optional, defaults to null | null

3.11 Link

A link to an external resource. Contains a href (URL) plus various attributes for authentication and/or hateoas.

Name Type | Description Remarks Exam-

ple

basicAuthPass- String optional, defaults to | null
word null

basicAuthUser- String optional, defaults to | null
name null

deprecation String | deprecation info (typically used in OpenAPI | optional, defaults to | null
specs) null

headerToken- String optional, defaults to | null
Name null

headerToken- String optional, defaults to | null
Value null

href String | The link target. required, defaults to | null
null

hreflang String | hateoas language optional, defaults to | null
null

media String | hateoas media type optional, defaults to | null
null

name String | HateOAS / OpenAPI name optional, defaults to | null
null

rel String | hateoas relation type optional, defaults to | null
null

title String | hateoas title optional, defaults to | null
null

type String optional, defaults to | null
null

Plus, there are labels having a special meaning:

3.10. InterfaceDescription

25

nivio Documentation

You can also store custom properties as labels, but keep in mind that

e capability The capability the service provides for the business or, in case of infrastructure, the technical
capability like enabling service discovery, configuration, secrets, or persistence.

* color A hex color code (items inherit group colors as default)

¢ costs Running costs of the item.

e £i11 Background image (for displaying purposes).

* frameworks A comma-separated list of frameworks as key-value pairs (key is name, value is version).

* health Description of the item’s health status.

* icon Icon/image (for displaying purposes).

* label A custom label (like a note, but very short).

* label keys are converted to lowercase and

lifecycle A lifecycle phase (PLANNED |plan,

END_OF_LIFE|eol |end).
note A custom note.

scale Number of instances.

security Description of the item’s security status.

shortname Abbreviated name.

software Software/OS name.

stability Description of the item’s stability.
team Name of the responsible team (e.g. technical owner).

version The version (e.g. software version or protocol version).

visibility Visibility to other items.

INTEGRATION|int, PRODUCTION |prod,

weight Importance or relations. Used as factor for drawn width if numbers between 0 and 5 are given.

label values are stored as string.

Item configuration

items:
— identifier: blog-server

shortName: blogl
group: content
mycustomlabell: foo
mycustomlabel 2: bar
any: entry is stored as label
frameworks:

php: 7.1

identifier: auth-gateway
shortName: blogl

layer: ingress

group: content

identifier: DB1
software: MariaDB
version: 10.3.11

(continues on next page)

26

Chapter 3. Model and Syntax

20

nivio Documentation

(continued from previous page)

type: database
layer: infrastructure

3.12 Iltem Groups

Groups can have the following attributes:

e identifier: A unique identifier in the landscape. Provided automatically via the dictionary key, so do not
set it.

e contains Array of references to other items (identifiers and CQN queries).

* owner Owning party (e.g. marketing).

* description A short description.

* team Technical owner.

* contact Support/notification contact (email). May be addressed in case of errors.
e color A hex color code for rendering.

* links A map/dictionary of URLs to more information.

Group configuration

groups:
content:
description: All services responsible to provide information on the web.
owner: Joe Armstrong
team: Team Content
contact: joelacme.org
color: "#345345"
links:
wiki: http://wiki.acme.org/teamContent

infrastructure:
team: Admins

3.13 Item Identification and Referencing

An item can be uniquely identified by its landscape, its group, and its identifier. A fully qualified identifier is composed
of these three: mylandscape, agroup, and theitem. Since the group is optional, items with unique identifier
can also be addressed using mylandscape and theitem, or just theitem. Nivio tries to resolve the correct item
and raises an error if it cannot be found or the result is ambiguous.

Service references are required to describe a provider relation or dataflow.

items:
— identifier: theservice
group: agroup
relations:
- target: anothergroup/anotherservice
format: json

(continues on next page)

3.12. Item Groups 27

nivio Documentation

(continued from previous page)

type:
label:

dataflow
Data Sync

28

Chapter 3. Model and Syntax

CHAPTER 4

Data Assessment using KPls

KPIs (Key Performance Indicators) can be used to evaluate landscape components (typically items, but also groups)
based on their properties. The result is a status represented by colors (ordinal):

¢ UNKNOWN (order 0): status could not be determined
GREEN (order 1): everything OK

YELLOW (order 2): ignorable warning

ORANGE (order 3): warning

* RED (order 4): error

BROWN (order 5): fubar

4.1 Builtin KPIs

4.1.1 Scaling

This KPI evaluates the scale label and tries to find bottlenecks where providers for many items are down or not scaled.
* red if 0 as provider for other items
* yellow if scaled to 0 without relations
* orange of scaled to 0 as data sink
* unknown if no label or not a number
* green if scaled higher than 1

* yellow if a bottleneck (more than 1 item depends on it)

29

nivio Documentation

4.1.2 Lifecycle

This KPI evaluates the lifecycle label for “official” values.
e PRODUCTION turns the KPI value to GREEN
* END_OF_LIFE turns it to ORANGE

4.1.3 Other

¢ health (examines the health label on items)

¢ condition (K8s condition true/false evaluation)

By default all shipped KPIs (Key Performance Indicators) are disabled. Set enabled to true in the config to enable

them.

identifier: kpi_example

config:
kpis:
lifecycle:
enabled: true
scaling:
enabled: true

4.2 Custom KPIs

Custom KPIs can be configured in the landscape config using ranges and/or matchers (regular expressions) and applied
to everything having labels. In the example below a KPI monthlyCosts is defined, using ranges on the label

costs, and the KPI myEval evaluates a label foo.

* Both ranges (inclusive lower and upper limits) and matchers are separated by semicolon.

» The displayed message can be customized by a template. The placeholder for the value is ‘%s’.

identifier: kpi_example
name: Using KPIs for data assessment

config:
kpis:
monthlyCosts:
description: Evaluates the monthly maintenance costs
label: costs
messageTemplate: "Monthly costs: $%s"
ranges:
GREEN: 0;99.999999
YELLOW: 100;199.999999
RED: 200;499.999999
BROWN: 500;1000000
myEval:
description: evaluate the label "foo"
label: foo
matches:
GREEN: "OK;good;nice"
RED: "BAD;err.«*"

(continues on next page)

30 Chapter 4

. Data Assessment using KPIs

nivio Documentation

(continued from previous page)

21 health:
2 description: can be overridden

The pet clinic demo uses a custom KPI which evaluates radiation levels. In this simulation a sensor item (see xray
group) collects a made up radiation (in mrem) in a label also named radiation. This label is then examined by the
custom KPI. See https://github.com/dedica-team/nivio/blob/develop/src/test/resources/example/pet_clinic.yml

4.2. Custom KPIs 31

https://github.com/dedica-team/nivio/blob/develop/src/test/resources/example/pet_clinic.yml

nivio Documentation

32

Chapter 4. Data Assessment using KPIs

CHAPTER B

Shortcuts and convenience functions

5.1 Assigning items to groups

Often lots of items can be read from input data sources, but no information on logical grouping is available. To mitigate
that, you can describe groups and use the contains field:

* To pick items by their identifier, add single strings which are treated as identifiers.

¢ Furthermore you can use SQL-like WHERE conditions to assign items to groups. In the following example
identifier LIKE 'DB1%' isthe query which would match both items.

items:
— identifier: DBl-gateway
shortName: blogl
layer: ingress

— identifier: DBl
software: MariaDB
version: 10.3.11
type: database
layer: infrastructure

groups:
infrastructure:
team: Admins
contains:
- DB1
- "identifier LIKE 'DB1%'"

5.2 Using Templates to dynamically assign data

To prevent repetitive configuration of items, i.e. entering the same owner again and again, templates can be used to
prefill values. Templates are just item descriptions, except that the identifier is used for referencing and that names are

33

nivio Documentation

ignored. A template value is only applied if the target value is null.

Multiple templates can be assigned to items too. In this case the first assigned value “wins” and will not be overwritten
by templates applied later.

identifier: nivio:example
name: Landscape example

sources:
— url: "./items/docker—-compose.yml"
format: docker-compose-v2
assignTemplates:
endOfLife: [web]
myGroupTemplate: ["x"]

templates:

myGroupTemplate:
group: billing

endOfLife:
tags: [ecol]

For CQ queries read https://github.com/npgall/cqengine#string-based-queries-sql-and-cqn-dialects.

5.3 Using Labels to assign data

You can set labels (string:string) to items which are evaluated as model fields if
¢ the key contains nivio. AND
* the rest of the key equals a field name.

Labels can be set using docker-compose files too. However, docker labels do not allow arrays, so use comma separated
strings:

services:
foo:
labels:
nivio.name: A nice name
nivio.providedBy: "bar, baz"
nivio.relations: "atarget, anotherTarget"
nivio.link.repo: "https://github.com/foo/bar"

Remember to escape URLs with double quotes.

5.4 Relations between landscape items

Usually environments such as Docker or K8s provide few to none information on the relation between landscape
items (e.g. which database a service uses). However, in 12-factor apps there is configuration through environment
variables (https://12factor.net/config) and these can be parsed. Nivio provides an experimental feature which regards
these variables as DSL (???). They are read and assigned as item labels, then examined:

* The key is split using the underscore character.

34 Chapter 5. Shortcuts and convenience functions

https://github.com/npgall/cqengine#string-based-queries-sql-and-cqn-dialects
https://12factor.net/config

nivio Documentation

« If it contains parts like url, uri, host etc., the label is taken into account as identifier, i.e. Nivio looks for a

target having the identifier, name, or address equal to the value.

Labels are examined as follows:

¢ In the case of being an URI, the host and name path components are extracted and used as names or identifiers.

To prevent false positives, certain labels can be omitted:

identifier: some-landscape

items:
— identifier: foo
labels:
HOST: bar
SOME_LABEL: mysqgl://ahost/foobar

— identifier: bar
type: database

5.4. Relations between landscape items

35

nivio Documentation

36

Chapter 5. Shortcuts and convenience functions

CHAPTER O

Output

6.1 Searching

Nivio indexes all landscape items in an in-memory search engine called Lucene. You can build sophisticated
queries on various item fields (see Model and Syntax). For further information see https://www.lucenetutorial.com/
lucene-query-syntax.html

6.2 Modifying ltem Appearance

6.2.1 Icons by Type

The icon of an item is determined by its item type (e.g. server, database, ...) and defaults to a cog symbol.

items:
— identifier: bar
type: database

As type values all items from https://materialdesignicons.com/ can be chosen. Just add the icon name without the
“SVG” suffix, like “account”.

items:
— identifier: bar
type: account

Alternatively you can use any icon name on the icon field.

items:
— identifier: bar
icon: flash-circle

37

https://www.lucenetutorial.com/lucene-query-syntax.html
https://www.lucenetutorial.com/lucene-query-syntax.html
https://materialdesignicons.com/

[S

nivio Documentation

6.2.2 Vendor Logos

The icon property can also work with a predefined vendor name, like “redis”, prefixed with vendor: // as scheme.

Vendor icons are work in progress.

items:
— identifier: bar
icon: vendor://redis

To change the appearance of an item to a vendor logo the icon or £111 properties can be set. Both properties take a
valid URL.

6.2.3 External Images

To include external images in the map, just set the i con property (or fill) to a valid URL.

items:
— identifier: foo
icon: http://my.custom/icon.png

6.2.4 Background fill

While icon (see External Images above) is rendered as centered image on the node, fill is used to paint the entire
background and is more suitable to be used with images, photos, and so on.

items:
— identifier: bar
£ill: http://my.custom/background.png

6.2.5 UTF-8 Symbols and shortname as Icons

If NO icon, type, or fill value is set, but a shortname value is given, the value is displayed on the icon. The first
example would display FOOBAR on the item and the second an enlarged unicorn symbol (shortnames less than three
characters are enlarged).

items:
— identifier: bar
shortname: FOOBAR
— identifier: pony
shortname:

38 Chapter 6. Output

CHAPTER /

Custom(er) Branding

The appearance of rendered maps can be altered to match corporate identities. When an SVG map is created, Nivio
tries to load and include custom CSS from a URL which can be configured in the landscape configuration. Further-
more, alogo can be included. A logo is configured in the landscape config and must be a URL pointing to an includable
file.

identifier: branded_landscape
name: branded

config:
branding:
mapStylesheet: https://acme.com/css/acme.css
mapLogo: https://acme.com/images/logo.png

items:

You can also apply custom colors to the user interface. Set the following environment variables to hex values (e.g.
#234234):

e NIVIO_BRANDING_FOREGROUND to set the primary color for interface elements
* NIVIO_BRANDING_BACKGROUND for the background color (dark grey is default)

e NIVIO _BRANDING_SECONDARY to set the accent color used for active elements

39

nivio Documentation

40

Chapter 7. Custom(er) Branding

CHAPTER 8

Troubleshooting

8.1 Behind a proxy

If you deploy Nivio to run under a different path than root (/), make sure to set the environment variables
SERVER_SERVLET_CONTEXT_PATH and NIVIO_BASE_URL to the path.

SERVER_SERVLET_CONTEXT_PATH: /my-landscape
NIVIO_BASE_URL: https://foo.com/my-landscape/

8.2 Graph Layout Tweaking

In rare cases the layout needs some manual improvements. Internally Nivio uses a forced directed layout, which
can be influenced by tweaking some parameters (although mxgraph is not used anymore, for further explanation see
https://jgraph.github.io/mxgraph/java/docs/com/mxgraph/layout/mxFastOrganicLayout.html). In order to change the
default setting of the LayoutConfig, add a section to the landscape description as follows:

identifier: nivio:example

name: Landscape example

config:

layoutConfig:

itemMinDistanceLimit: 60
itemMaxDistanceLimit: 360
groupMinDistanceLimit: 140
groupMaxDistanceLimit: 300
itemLayoutInitialTemp: 380
groupLayoutInitialTemp: 1000

41

https://jgraph.github.io/mxgraph/java/docs/com/mxgraph/layout/mxFastOrganicLayout.html

nivio Documentation

42

Chapter 8. Troubleshooting

CHAPTER 9

References

Similar approaches can be found at our system graph collection.

Nivio has been inspired by pivio and uses similar semantics, but has a different focus.

43

https://github.com/dedica-team/awesome-system-graphs/
https://pivio.github.io/

nivio Documentation

44

Chapter 9. References

Index

E

environment variable
DEMO, 9
GITHUB_JWT, 9
GITHUB_LOGIN, 9
GITHUB_OAUTH, 10
GITHUB_PASSWORD, 10
GITLAB_HOST_URL, 10
GITLAB_PASSWORD, 10
GITLAB_PERSONAL_ACCESS_TOKEN, 10
GITLAB_USERNAME, 10
KUBERNETES_MASTER, 10
NIVIO_AUTH_ALLOWED_ORIGINS, 10
NIVIO_AUTH GITHUB_ALIAS_ATTRIBUTE,

10

NIVIO_AUTH_GITHUB_CLIENT_ID, 10
NIVIO_AUTH_GITHUB_CLIENT_SECRET, 10
NIVIO_AUTH_GITHUB_NAME_ATTRIBUTE, 10
NIVIO_AUTH_LOGIN_MODE, 10
NIVIO_BASE_URL, 10,41
NIVIO_BRANDING_BACKGROUND, 10, 39
NIVIO_BRANDING_FOREGROUND, 10, 39
NIVIO_BRANDING_LOGO_URL, 10
NIVIO_BRANDING_MESSAGE, 11
NIVIO_BRANDING_SECONDARY, 11, 39
NIVIO_ICON_FOLDER, 7, 11
NIVIO_MATIL_HOST, 11
NIVIO_MAIIL_PASSWORD, II
NIVIO_MAIL_PORT, Il
NIVIO_MAIL_USERNAME, |1
PORT, 11
SEED, 9, 11
SERVER_SERVLET_CONTEXT_PATH, 41
SONAR_LOGIN, 11
SONAR_PASSWORD, 11
SONAR_PROXY_HOST, 11
SONAR_PROXY_PORT, 11
SONAR_SERVER_URL, 11

G

GITLAB_HOST_URL, 10
GITLAB_PASSWORD, 10

N

NIVIO_BASE_URL, 41
NIVIO_BRANDING_BACKGROUND, 39
NIVIO_BRANDING_FOREGROUND, 39
NIVIO_BRANDING_SECONDARY, 39
NIVIO_ICON_FOLDER, 7

S

SEED, 9
SERVER_SERVLET_CONTEXT_PATH, 41

45

	Getting Started
	Installation
	Creating the first landscape
	Updating the landscape
	Exploring the Nivio model
	Adding relations between items
	Adding icons
	Introducing KPIs
	Summary
	Bonus: Having Nivio pull your data
	Deleting items
	Environment variables

	Input Sources
	Kubernetes cluster inspection
	Rancher 1 Cluster Inspection
	Nivio proprietary format
	Reading from CSV
	Reading and Mapping from JSON
	Reading from GraphViz dot files
	External data

	Model and Syntax
	Landscape
	LandscapeDescription
	SourceReference
	LandscapeConfig
	KPIConfig
	LayoutConfig
	Branding
	GroupDescription
	ItemDescription
	InterfaceDescription
	Link
	Item Groups
	Item Identification and Referencing

	Data Assessment using KPIs
	Built in KPIs
	Custom KPIs

	Shortcuts and convenience functions
	Assigning items to groups
	Using Templates to dynamically assign data
	Using Labels to assign data
	Relations between landscape items

	Output
	Searching
	Modifying Item Appearance

	Custom(er) Branding
	Troubleshooting
	Behind a proxy
	Graph Layout Tweaking

	References
	Index

